Air source heat pumps
Air source heat pumps (ASHPs) use the external air as a heat source to provide heat for buildings.
They work by running a low-temperature, lower pressure refrigerant fluid in heat exchanger coils through the external air. The fluid ‘absorbs’ heat from the air and boils, even at temperatures below 0° C (although the coefficient of performance (COP) decreases with lower temperature). The gas is then compressed, which further increases its temperature. The gas is passed into heat exchanger coils, where it condenses, releasing its latent heat. The process then repeats.
This is the same process that is used to extract heat from a fridge. It can be used domestically or commercially and some systems can also be used to extract heat from a building to provide cooling.
There are effectively three types of ASHP, differentiated by the output temperatures they can achieve; high, medium or low temperature. High-Temperature Air Source Heat Pumps (HTASHPs) tend to use more robust components and specialised refrigerants (such as R290/R32), as well as dual compression systems to achieve hotter temperatures than standard ASHPs as high as 80°C. Where output or flow temperatures achieve a maximum of 55°C they are considered as Low Temperature Air Source Heat Pumps (LTASHPs) and most suitable for systems such as underfloor heating or larger surface radiator systems. Medium Temperature Air Source Heat Pumps (MTASHPs) run at a maximum of around 65°C.
Air source heat pumps can be air-to-water systems (providing hot water for direct use or to supply radiators or underfloor heating systems), or air-to-air systems (providing hot air, either directly into an internal space, or to be distributed by fans throughout a building).
Air source heat pumps can reduce energy consumption, fuel bills and carbon emissions, particularly where there is no mains gas supply, and so alternative heating systems would consume electricity, liquid petroleum gas (LPG), oil, or coal.
They require the siting of one or more units, similar to an air conditioning units, outside the building. This may require planning permission, although in some areas, some installations may be considered to be ‘permitted developments’. Siting is important, as units can generate noise, and an electricity supply is required.
Air-to-water systems are most effective when providing lower-temperature hot water, over a longer period of time, than might be supplied by a conventional boiler. This lower-temperature hot water is appropriate for underfloor heating, or for large radiators. The coefficient of performance drops at higher sink temperatures (the temperature of the supplied water) required for smaller radiators, or for providing hot water. Higher temperature hot water might be better provided by other low-carbon systems such as solar thermal heating.
Because they provide lower-temperature hot water over long durations, they are generally most suitable for highly-insulated, air-tight buildings.
Air source heat pumps are generally low-maintenance and can be cheaper and easier to install and less disruptive than ground source heat pumps although their efficiency may be lower. Ground source heat pumps use a similar process but absorb heat from the ground, by circulating fluid through buried pipes. See ground source heat pump for more information.
Other benefits include; long life, low maintenance requirements, they are not polluting and unlike conventional heating systems they do not use combustible fuels or require flues. However, care must be taken over the selection of refrigerant, and leaks must be prevented.
Air to water heat pumps are be eligible for payments under the government’s Renewable Heat Incentive (RHI) scheme. They were eligible for funding under the Renewable Heat Premium Payment scheme, but this scheme closed on 31 March 2014 when the domestic Renewable Heat Incentive scheme was introduced. It might also be possible to obtain help with domestic installation costs through the Green Deal, however, there has been very poor uptake of the Green Deal, and it is generally considered that better financial deals are available elsewhere.
[edit] Related articles on Designing Buildings
- Absorption heat pump.
- Actuator.
- BSRIA domestic hot water heat pumps testing.
- Coefficient of Performance CoP.
- Combined heat and power CHP.
- Earth-to-air heat exchangers.
- Exhaust air heat pump.
- Geothermal piles.
- Green Deal.
- Ground energy options.
- Ground pre-conditioning of supply air.
- Ground source heat pumps.
- Heat pump.
- Heating plant emission rate.
- High Temperature Air Source Heat Pumps HTASHP.
- Low Temperature Air Source Heat Pumps LTASHP.
- Plant size ratio.
- Product Characteristics Database PCDB.
- Renewable energy.
- Renewable energy sources: how they work and what they deliver: Part 3: Electrically driven heat pumps DG 532 3.
- Renewable Heat Incentive.
- Room-based heat pumps.
- Solar-assisted heat pump.
- Solar thermal systems.
- Thermal labyrinths.
- Water-source heat pumps.
- What is diversity in HVAC systems?
[edit] External references
Featured articles and news
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.
























